Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230815.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230815-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230815.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230815.tar.gz
Algorithm Hash digest
SHA256 aff29ef510cf3f47645fc1f1ae4e33fe7a7b7e396572947d571832da3812f2f4
MD5 003e85c3077276ed55ffa096de034af8
BLAKE2b-256 6bbd2a081ea0e1c7021722f59c95086be87bd1ff228a8c88f672cf85e76f0478

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230815-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230815-py3-none-any.whl
Algorithm Hash digest
SHA256 45d0a4d83b9af5946dac65fb24d6d84eb80b8872544943bec9c220cb0f7a6f68
MD5 e9e1def319ca6cb5ab9c061d4b0c3949
BLAKE2b-256 097885f80eb52335ab5018f0acbdc5e5663c3060075d11e559881020ab679acd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page