Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230816.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230816-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230816.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230816.tar.gz
Algorithm Hash digest
SHA256 5ad9d4c6ce6d8657de92c78159480b4cd5f94a9087afecce1f2656d0dc704055
MD5 184a9b17548d0e2a625e7d397f47df7c
BLAKE2b-256 f853788f17d0e49b3e1463d953dd30718abbf0590a02317950c2d5538c7d46bb

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230816-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230816-py3-none-any.whl
Algorithm Hash digest
SHA256 14ce1541e86485f1f5941c198b1a9489ff8f090ef752bc0705bb4c2e4641ec6f
MD5 3801e796d33fbe1c26e1d20f6ee97468
BLAKE2b-256 43f391f771ad7ee04b4435166daca74263c682a9c821438e20d135b23260b379

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page