Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230817.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230817-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230817.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230817.tar.gz
Algorithm Hash digest
SHA256 1f0ccf9f7fdd98247f6837a6d8345f3d8625b80df541f5c8d15b44864337cf43
MD5 9f3d57b6aa2a1f49c74fa5a0d194c16b
BLAKE2b-256 531f565734ae10c79883a3a101078ac3f325066658a9fa27eec2cf2c0fe5cc24

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230817-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230817-py3-none-any.whl
Algorithm Hash digest
SHA256 ed57e54bb90acb9501271050ff90cc32c3c528dec86b15754e10821202d3e280
MD5 c606e32d6dba320a9bd66524e58ed7bf
BLAKE2b-256 fc82fa47d0c1b3fd016485e160f1e58e3196e2db2b6af5cef8633d723dc567fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page