Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230818.tar.gz (58.0 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230818-py3-none-any.whl (79.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230818.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230818.tar.gz
Algorithm Hash digest
SHA256 c8892378a18a3d53a350d6f2842a3f46133b069ab9381b3956fd29c6b706729c
MD5 ac90ab98439a9e47a6431d3cb443def0
BLAKE2b-256 9b7b26ae0012cac1aa8c077c9fdfd62d399470e32778127694f56472c60e50f3

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230818-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230818-py3-none-any.whl
Algorithm Hash digest
SHA256 4201c99a4be9aad36024abad96da47014526d0d29d525a7ab6005d7ed34f5b1f
MD5 05be44df86ed8a94096160452f6b7425
BLAKE2b-256 0d40635fb73840a826bd18558a1170995927fdbbc22f32f5ca74916de7c8da59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page