Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230819.tar.gz (58.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230819-py3-none-any.whl (80.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230819.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230819.tar.gz
Algorithm Hash digest
SHA256 6feee81b82cdc866acb99e1af2ca2362cc5eea905a269cfce97a4eb8efebdcc0
MD5 307f1320946e2e8c7d979aa015509e74
BLAKE2b-256 8bf6a7aad72ec00b7657f857cf15f8993041d71984d3ee52236921604f842541

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230819-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230819-py3-none-any.whl
Algorithm Hash digest
SHA256 d47868aa82865f0735e3756b625aa405b97507f6b208425bbd3fb4a4aa56f20d
MD5 0621e55731992d8587574ff58085866a
BLAKE2b-256 3fbe20dde8c7f4ca029789786c5a811a0845e12d21e3a368b42b196125aaf037

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page