Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230823.tar.gz (58.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230823-py3-none-any.whl (80.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230823.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230823.tar.gz
Algorithm Hash digest
SHA256 bcba285a5ed7423d69bb0bd3a152377317fa28bc0c1c22eb6ba40ecfaa371023
MD5 f6aa888d47713dca65fc43370ae0a267
BLAKE2b-256 c188317a083d06a4e0a89be323a25746c1e665c14afa68b71c2c2a542b6a0861

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230823-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230823-py3-none-any.whl
Algorithm Hash digest
SHA256 df78629d9e271314da16638320a01b171108286a0140fa1334c14e3d0634ea2f
MD5 bbbee1ab9e9d0056c4d84b6bf1c8b395
BLAKE2b-256 8ab6e8029aef5e0e3a7b20983842dd2f0a9699f88608eeff9d4cbce7376f1a73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page