Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230824.tar.gz (58.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230824-py3-none-any.whl (80.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230824.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230824.tar.gz
Algorithm Hash digest
SHA256 8c21d0496182926aea3b21eb4f571c8fbaa3c0c3f3ebc845d4186b3c312b9d8f
MD5 38e8fc211efccae9fae5a5583bb525b4
BLAKE2b-256 13276d471dab2a97e09e5407ed8183bcd1eb580b45b9aa2c03b89cc915b0cab2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230824-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230824-py3-none-any.whl
Algorithm Hash digest
SHA256 2df14fd00a9ec697ba88cdb3f9dcdcd17f581517fe0ef599159986ac1b820b52
MD5 397af81fed3ec96c495342c9ab2091a0
BLAKE2b-256 2120948c50fd0ad13fa9b94bbf04c3a88f3eef3be51c9a83718561fb73a2b7ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page