Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230825.tar.gz (58.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230825-py3-none-any.whl (80.3 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230825.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230825.tar.gz
Algorithm Hash digest
SHA256 7ace77dbeeb3588abc420ddbad118af36861bacf1b9cde2422b836e110d849b4
MD5 b6ff4ede19a5d889e67d44005083dcc8
BLAKE2b-256 f15cc72620e6ed97041243d003508eccd2528ba50385f4476a976ebf4ed0382a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230825-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230825-py3-none-any.whl
Algorithm Hash digest
SHA256 1937fb664fa3fec9c440b8cd1f1b3fa80a718491439e1e2f6aafb170786c346c
MD5 ebfe130bfc3d45f3108d830b38d683fe
BLAKE2b-256 10b38b97029f90ad9776de894eeba284db5bb9c024638b003f4866401e881421

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page