Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230826.tar.gz (58.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230826-py3-none-any.whl (80.3 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230826.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230826.tar.gz
Algorithm Hash digest
SHA256 3a8be6bd92fc616cd9435287ce3e21e4e5b05491a723520dff44591ccc8a29d2
MD5 4f89a73a960d8703f9e23c676c38b502
BLAKE2b-256 61ea10b6af2863580cca63518e420bd472f659ce9b986b31822446738df7a11a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230826-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230826-py3-none-any.whl
Algorithm Hash digest
SHA256 e193d6d16e705369343178cbe0dc83ac020b050d6d9ad8465315f90629d00ee7
MD5 089b5f858c223a0b26c62aee5a93a98a
BLAKE2b-256 43b1d5609ce4e07a20bedc264684227be950b708eb351d16e5d59efcec24ca8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page