Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230829.tar.gz (58.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230829-py3-none-any.whl (80.3 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230829.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230829.tar.gz
Algorithm Hash digest
SHA256 b4d6f8d0dd73891488303118823bd792c781f32cc63b10505e822fb0647139f5
MD5 c325ecea352fb8a81f6991f4bd985da0
BLAKE2b-256 23cbe8b0c52776f42311dec7bb4c33312f39e03454e1a2473c5b4c6693cb9d03

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230829-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230829-py3-none-any.whl
Algorithm Hash digest
SHA256 46d8d6b4209a7766bdb16a2acfba02da79cef4c33b78768202fda1769231975a
MD5 4dc0829ed0c2bf7be67608ef0a24b48b
BLAKE2b-256 191480c557df622abd4304bd10559c3bf4c234d26bfae920011fcbe1c4980683

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page