Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230902.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230902-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230902.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230902.tar.gz
Algorithm Hash digest
SHA256 68ea6fb21eb0fb8c4df825416716c196f87482d1f523fc84df12ed20227340a2
MD5 9127b647d5a81461b5eb49f40789c019
BLAKE2b-256 7000cdc686c952fe9f989c8375bef3dd9f7ebde5d6428fffb48708de72cce3ce

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230902-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230902-py3-none-any.whl
Algorithm Hash digest
SHA256 c275e180ab8abc4c202f58fa99ccdea8bf657f3311677451495eb088ef4c1bae
MD5 d0d19c5a7a67cd9214df22184e68f65b
BLAKE2b-256 b0d0183dde7c885dbe013bb00ee0a6aa2ce514391a7f11ffdb9360b7f9d4f7ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page