Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230903.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230903-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230903.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230903.tar.gz
Algorithm Hash digest
SHA256 f3dd276a502c7af53e474078551a46043736bc42a4975862efdc16b18b0cb11d
MD5 6631d8ba13e0f815a1ad4f0b86a539d5
BLAKE2b-256 70f7387a89b606c091f5fa311f497f46511ce494663466184e8cafaf85923c45

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230903-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230903-py3-none-any.whl
Algorithm Hash digest
SHA256 428eee23fd20cd3db3b76bef2915ade27c9a918b39be40e43ebbf0d50e9d2638
MD5 c22891892acd68562785be1a4f408157
BLAKE2b-256 474b54ae99d415b602ec00bf5e0fb2a78d920304cae1db574d07ad7e04bb4343

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page