Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230904.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230904-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230904.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230904.tar.gz
Algorithm Hash digest
SHA256 71b0e22b837d4dc279c884e2d54660815384db847e7e5c81999747f149a56757
MD5 1e6ee1e201f28a9e2543ba06f17dfddb
BLAKE2b-256 eb847fd20cc7e3e08f0faf4fcbdf64d2adfe5436a590483555ff26b0d3de340b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230904-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230904-py3-none-any.whl
Algorithm Hash digest
SHA256 9399f4a1b3f3b3b063a7c6ec045fbe1003938d06c700f2125a250177fd48aabd
MD5 aee67e8894c4a95aa4c16268f046c5fd
BLAKE2b-256 3da815392dcfb8ca11874ae5b4fd3e704bf0f393f74571e9356ee3d4dd7dca20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page