Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230907.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230907-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230907.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230907.tar.gz
Algorithm Hash digest
SHA256 c55f0a505da5fa3ef1e49a1cdaccd77abba25a0d3ecba597974e903f93717875
MD5 c1b153e89b4f939af98dc3c93fef658e
BLAKE2b-256 01bf98e59a591f21c29e84b9c8c598563a4e7a53842c2e104eb13eb3aa6046ee

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230907-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230907-py3-none-any.whl
Algorithm Hash digest
SHA256 a1decd9a317344f9b229a6c5074cd79d0bfeddfe1f3d708fdcd3d0e2a77bb949
MD5 155d438caac1a687f10002f395b3ba46
BLAKE2b-256 c1e058a3576865ff56a33d21f8c4f8fab28110799b610f3f61469b3ffb7a1104

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page