Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230909.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230909-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230909.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230909.tar.gz
Algorithm Hash digest
SHA256 8b6122233055dcdbf2caaddd951af00a4109b5aff4e5b37c5a8af59d34767c5b
MD5 3ae836f53f0caef827839d15ec65f19c
BLAKE2b-256 07d6fed6eb5a2869e5fe7b2f28d71b9e941404066b95752e473864bdd71f8ba2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230909-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230909-py3-none-any.whl
Algorithm Hash digest
SHA256 4b019c774fe5f52591cef431ede3fda8deac331c5609f9e31dc6d43b9635534c
MD5 eb65cc05e49d306ed1c583e6c0af22f1
BLAKE2b-256 4ec6b81969779c2cba0f0c0c71db488dee489aa71f620abeaed5c485e5a64126

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page