Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230910.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230910-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230910.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230910.tar.gz
Algorithm Hash digest
SHA256 884757c51466a14d18f51c59ed7f52b8a91a420d112f3e5249b30a19f3abd224
MD5 c6547bdce55d0edbb943662d5627eb2b
BLAKE2b-256 faf36d8b24fa95e6e1a9babd1711fa03ba23b30a7e047553cf1209d2ee880d85

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230910-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230910-py3-none-any.whl
Algorithm Hash digest
SHA256 ea9847d2d55b6ab8c8eb9c31de13a4b439771a34d7035babd28896b306682c4e
MD5 5ce30373d8ff55bd313564afea2d19f1
BLAKE2b-256 3d9564d0a38b8297129388049778b67ad77b7a74a7a3a865aaa553406a570fd4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page