Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230911.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230911-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230911.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230911.tar.gz
Algorithm Hash digest
SHA256 fac78db01c2d3d739a2ded1b0c70fd9e49099643d304e7413772a1f4b879ffd3
MD5 2b50946bfd8a43e0b9661f68ffb953c4
BLAKE2b-256 3faf4b915dc3eedbf37ffa4983f21bfd8ba9870183926f0d2d698f97a012648a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230911-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230911-py3-none-any.whl
Algorithm Hash digest
SHA256 074a59d2d3b881e4777a25a77e7e406a7464e1e7745692b2f3719d4270069469
MD5 10f1cbcef20a8121b2dff90febb8a478
BLAKE2b-256 0bf2157fd0dd0b4ca39d31d3184637a23e264b4e92384f17950b7869c3beb6a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page