Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230912.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230912-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230912.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230912.tar.gz
Algorithm Hash digest
SHA256 3b86a23af7fe4b610a66bc9d731791f7e163d7026ff98c8e01196180186ef65c
MD5 8b5d8e8c89373892968dc6f2d2c08d8d
BLAKE2b-256 ae8a1a3071d0e03aea66c8f52e3682f04a88d0fca7655e0e0a951a8138b9c8af

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230912-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230912-py3-none-any.whl
Algorithm Hash digest
SHA256 0bad21b52c859e5b4db934db5178e92923641f57610ab42858a4057a86456828
MD5 f992f3427644efa05844d5a59d389ca0
BLAKE2b-256 3436d4ac6b6ad1e9a7c3882d133d01793aa8013295dcced57d5c9ec74343d111

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page