Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230914.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230914-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230914.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230914.tar.gz
Algorithm Hash digest
SHA256 427cf32c712400150e4d22ad806a34e5c1362cf07ed51ba4945d6ee9a75370c5
MD5 0cfe196a723e4ded384110aef97e5e6c
BLAKE2b-256 dd921fe3028d7b21e16611c43ae714cae3a19d311c73f4309406823e41c59538

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230914-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230914-py3-none-any.whl
Algorithm Hash digest
SHA256 1a9d65b677223ba54fd6d6ce1e64274f209392a35dc8ac9184b35bb5e6f61678
MD5 07749f870e8973aee0e28386235a9108
BLAKE2b-256 8edc366fa0f7939d44f07074319915160f6601c2f07173c84dd6da25ae73aa86

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page