Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230915.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230915-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230915.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230915.tar.gz
Algorithm Hash digest
SHA256 8338e82574df4547ffcf076a402becaf36664127e68f4f672396ab872c13dc39
MD5 2beffd7908048e046e0299cb01a409da
BLAKE2b-256 970c52903686bbd961b399d88dc2036b5b94c84d2d63851d82935c1b3fbf410b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230915-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230915-py3-none-any.whl
Algorithm Hash digest
SHA256 43d7e362d48d3ba628bc2f44a8cae0c2d633be444218a8d3bd8cfeca69f5877b
MD5 9e8128aaf3f1ced281eeaafc22be1bbd
BLAKE2b-256 8852d77dcaca812fee35ba29e4bac5cc2ff1b9e6237be59c47f1f2cf6e243555

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page