Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230916.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230916-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230916.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230916.tar.gz
Algorithm Hash digest
SHA256 af68ac6cb88cb0e031fc08b72ef50e1e08714cf021d02f5161368aea231d705b
MD5 adcb52925bbecebf6a322c086e9642a2
BLAKE2b-256 93909ebe2b68b3ca0780061381d474e31531782a19c500b693c2dfee053d30e9

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230916-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230916-py3-none-any.whl
Algorithm Hash digest
SHA256 13df748e3cabb736720b5c73a8e1ee57bbb2b3db2e26da98105176ee693a6a0c
MD5 ca72f15ffdd80c276ebe594a7eee014f
BLAKE2b-256 0c21c8d78857974f0025d1ae5cd2b89eaef8293e07592f4bea91f0fcbfe49d9f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page