Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230917.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230917-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230917.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230917.tar.gz
Algorithm Hash digest
SHA256 7f5b21eb9d28f6ae1bb302bd3d66fc6beca19cef5d8ce599e4b7452299688cc4
MD5 a30f5b6f147d73e9d190d0dbb04c89e7
BLAKE2b-256 cf99b3c40281e51c131f2ea155e99becf05a73f182a94cd02888c8f995f1f43b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230917-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230917-py3-none-any.whl
Algorithm Hash digest
SHA256 3c5a9899b4562b9151bff1c57d7b83b76a3023369e3d2010a08cdec09955a7b2
MD5 a2c54d5ec67dfdbe297243d41217d385
BLAKE2b-256 fd2db512ed791ff347659669d9ea15545b3e0f26a87bec68d2506c350729db44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page