Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230918.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230918-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230918.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230918.tar.gz
Algorithm Hash digest
SHA256 18106da6d3eb9dc54ea95cd5dabebd7802411fb937e46e7fad8442cc103b8cd4
MD5 48a7ecc15cff4b4ce3842d48292f53c8
BLAKE2b-256 c54303b244f258eff38a259dc5bff2a4ad1f85eadb57a7032a1dbe4dddd7d434

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230918-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230918-py3-none-any.whl
Algorithm Hash digest
SHA256 803ec1a3654f1bbaee85d95f0aa9b0582c3020b4a517375fb9ddd53b0de34435
MD5 344d432dea024c79c81f2f1ffe887820
BLAKE2b-256 7dee56bcba756c0a4187ab92de09593f1dc4bbc897b3b6ac9e10ffe04cc1603f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page