Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230920.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230920-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230920.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230920.tar.gz
Algorithm Hash digest
SHA256 8375b69eddf058e4c1f9879f0c86c0e1728b66b3780c4d1017ab4f0c354d3e27
MD5 e7d4f8b4a8a989c808430857dacb92d7
BLAKE2b-256 241b0eb2c8b5c691ac3631241b6b734f391195b415d9d9f5eeb7b03495626e28

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230920-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230920-py3-none-any.whl
Algorithm Hash digest
SHA256 51ff8d0e2b0cbcf4ae5de8c3b86be7861beb031e16eef2cedeafb88278d6b12a
MD5 ac630ce59697a03450d0995d7e4ee3a4
BLAKE2b-256 03b03e4060b482a0c1fb665fc54fd832fe8aa2f535d225a566aefe877344301e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page