Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230921.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230921-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230921.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230921.tar.gz
Algorithm Hash digest
SHA256 aba874b1d7adb93ba2b1f5367a192deba4ea143c7f600ee7959e9754ab0a9ded
MD5 436654fc5818e7a9ad286217cea4e570
BLAKE2b-256 867709a1b61089cc7d315b0bc818efcaa9bea330da6b90ed443de9c70b366999

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230921-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230921-py3-none-any.whl
Algorithm Hash digest
SHA256 ddb73a57179e16b3c98869d4dfdf0306c3a2ccb50caeb1776619640d13ba3aa3
MD5 b1429b173c2a6fdaeec97700304aee86
BLAKE2b-256 085db263b20d29175b1c67d52c365a05bd61929020f4faf884b8048d1da06c2b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page