Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230923.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230923-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230923.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230923.tar.gz
Algorithm Hash digest
SHA256 910e89aae7baf4ad5c5fb3b207d62a10a93284a79f8f3d246041ceda2cc61a38
MD5 d76100e26e9c6b891436ab68861efaca
BLAKE2b-256 ff9c69535173008f2c6b55bb3076fce89c1ff95c9c1505280ffbbf6b901072d6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230923-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230923-py3-none-any.whl
Algorithm Hash digest
SHA256 a0b0361ee2f839912783a39496381ab9c9d364c126223b8d9e4d5e766aa5a0cb
MD5 1b58aa5ac37fe6b4c07f68f3217e4c9f
BLAKE2b-256 51a9539ae4dde7e9bfc5c5bfb0d50eb03ef67b61e38d56380fb1fc54041e8d39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page