Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230924.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230924-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230924.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230924.tar.gz
Algorithm Hash digest
SHA256 e3a45c071242c364eca662afde04ac81117418a3366862da523e60682a570e2e
MD5 116ed3539170dacdad9a8530c5e41a35
BLAKE2b-256 d8049b3038d21c5b69be71c83dfc3fcca9be5cf55deb06976b4696a9ced35d66

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230924-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230924-py3-none-any.whl
Algorithm Hash digest
SHA256 a84917881f220c9f32651edb0eeab487f7277cf7b4ad899dd6b25466e6198980
MD5 12d49d7aca21aa58df394d6ef0ee6a4d
BLAKE2b-256 83f000283f7f427ba12edb490a4830c19bb02d2e1b3ea7c601e51b243d60e3f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page