Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230925.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230925-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230925.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230925.tar.gz
Algorithm Hash digest
SHA256 b7714721087ea2be05e6aec33a023ba2126f5e51995359960e84aefd9e7b7e3e
MD5 85cb09c22d49dd184089932d876a417d
BLAKE2b-256 70d94801647c199ce3b630bf802b7aaf94ed9e5fb1c43e7899856f9ac674136c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230925-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230925-py3-none-any.whl
Algorithm Hash digest
SHA256 66f26197b11c815dbe2f5369cb53304e1999a8b9cfc7feb6ec757550545bf717
MD5 02e64a49c00c2a74ef4c994ea2f6d5f7
BLAKE2b-256 b61223ba8f112a89bbb1649c9fa904c44e45f11aeb249d11962511154c31d6df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page