Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230926.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230926-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230926.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230926.tar.gz
Algorithm Hash digest
SHA256 d87a83ed3e1d84b64df75241d62898e5c00eff05df768f3e35a095f74955abf9
MD5 06d9aa2290fc29eb832af0f64bc638be
BLAKE2b-256 5b7d2859b663ae3b30b1aac9523d64ed784aa93a300f2e5b6bf5e4efbfcdb75c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230926-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230926-py3-none-any.whl
Algorithm Hash digest
SHA256 dc1e58637e9e22d61c873b656cff03800939f8e94fe19c6cc85d3c0ea8a3fcd5
MD5 9b1f1f6ade9619afa8b0fffc797ce8a4
BLAKE2b-256 b7cb7776750480623cc618b3064dd67636bfdf6f2b2734be5338df3a06bbfba8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page