Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230927.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230927-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230927.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230927.tar.gz
Algorithm Hash digest
SHA256 e4922202610fc7802e86d3dcbfe7a1fda3a2f2b72ebba812d9aa4c4b74a70dff
MD5 e76f76d8b4e8ddbbc339a338b089f9e7
BLAKE2b-256 4f989cef37769bbbab9f71a5eee399ec690a637ae96971ed187d3841db41c5da

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230927-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230927-py3-none-any.whl
Algorithm Hash digest
SHA256 082108f001a5db0f985ef00501bebf4025c87c0b87ac4228928a87347b1a45d3
MD5 8663a609b98324797aeb58fc38eb4ed0
BLAKE2b-256 01a4b9f5e13e6aa93d49cead9ba6870ae469912514aa0e49de2f991935679b92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page