Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20230929.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20230929-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20230929.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230929.tar.gz
Algorithm Hash digest
SHA256 be616f7f6d88097823df708c58d2e24220a98c36f2caa5232c8c6b688a8e8064
MD5 5c2ae6d10adae82acff2ec036097dcd4
BLAKE2b-256 9e2a5dfd86a88cd5652bd7479deb6a093d0b5fd355a22ea2af15034b859eeb54

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20230929-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20230929-py3-none-any.whl
Algorithm Hash digest
SHA256 459347a32516fc9015c272d90ac7430528cff164cb032c2951482aafc51a335c
MD5 5404135788efa85ddc61909fdf7400e9
BLAKE2b-256 5fa6f84bef3363517045690e756e7a6d6670b6bd2c71bbbe440733f994222ce3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page