Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231001.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231001-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231001.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231001.tar.gz
Algorithm Hash digest
SHA256 f37468b64a784df4b4b12ab194ed9217804cf3c2b4403e451dc893761b6ecc74
MD5 dfda3e90e0f02781a9df61de837b6404
BLAKE2b-256 729eef4fc9c167e79c1974f71a3cfe27a67a4388ff1f49977dcf7a083b218ee9

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231001-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231001-py3-none-any.whl
Algorithm Hash digest
SHA256 502fe2d97b6bbe2e510d63bd4759e1b844af3c12ebf2948b7af308cfccaadb07
MD5 027b9b384149a73e7c4a1d5043427710
BLAKE2b-256 27d1b2b78224c68fc87163dd70b60d738c8a037a3949ca5f39532255a28d6b47

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page