Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231002.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231002-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231002.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231002.tar.gz
Algorithm Hash digest
SHA256 e1b56c32ad3eb5fb41a32cec602955ac876a12904625dbbb4cbfa8dcaa2e7bb6
MD5 e89e1f0c4e57db9de7160270df716bff
BLAKE2b-256 9a6c1033eb7fe858d8341545191b0cd32031dfbee8e4b942b4d6fe5921c29d18

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231002-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231002-py3-none-any.whl
Algorithm Hash digest
SHA256 7762266b78e6b947fd35763f70b656c4a59d4d4a6c784b1db9f64eeb3962110e
MD5 095d8964737c1198846954bc972f7332
BLAKE2b-256 98867d245f44d900a4492f1cd5ac07571f09072d418ccb1d8b598846992c3f57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page