Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231003.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231003-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231003.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231003.tar.gz
Algorithm Hash digest
SHA256 36267a505ce35cf74363e795b94e87d6bb4c4d73646771a64f851e0999ccff04
MD5 b373f7e0a02e03ac1f07352f5768c144
BLAKE2b-256 7b8714eb6692db1841173554983434f1381f322cd7e8c5eb261cc0c049e41de8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231003-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231003-py3-none-any.whl
Algorithm Hash digest
SHA256 d93c7116c74724ab4576b9b14d69dba7e5c3a2b538b4b38bdd69e0a28c17d8c5
MD5 cea501ae6de330b7106c600cc0bf436a
BLAKE2b-256 dfc7eff8bad2842e69f099e7f1be91a231bbf2d7b096a488bfb43b84fbb26829

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page