Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231004.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231004-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231004.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231004.tar.gz
Algorithm Hash digest
SHA256 ce623332d9e5fc771b8fa15b7830fecdd0ebabb85da626970bb0f4fec63e68e1
MD5 0b3add8805c7e1f022afe3be2cd50422
BLAKE2b-256 1b9256f2d1a5bccdd9005c3eaa23d332cdfced13b1f1b2d09604e810fd1bf90c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231004-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231004-py3-none-any.whl
Algorithm Hash digest
SHA256 4ed767cb69b3bb837d270467fedbfc91ccc03f308824ecb180a6686f5f768ac7
MD5 41615560765dfe95c0cfdbda50c2ac01
BLAKE2b-256 5d0be20e855aeb0bf40854a900d8293f24c4274c97091053d22a1f265c13b092

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page