Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231005.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231005-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231005.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231005.tar.gz
Algorithm Hash digest
SHA256 0d3ed3b1d1fee1577c08cc3974eda23b4b099f2c1aa265b462fbbaf675b62825
MD5 32efeb788e6c8d3d103f749cd92d0b85
BLAKE2b-256 694c6d36b6805d0bedb2f64603a5ce6686193ec5d9be546302c351bf0a65a4e8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231005-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231005-py3-none-any.whl
Algorithm Hash digest
SHA256 1ff4d93a47615f63d985c9316df26df025c1f336b6eef86f5a782025a854ea4f
MD5 2a262af1a79f6e070bdb626e8c42884d
BLAKE2b-256 f1012a79a4bba3e38eee8a1d38b64ca4a93922ecda3d4360db8218769b8b1dca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page