Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231006.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231006-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231006.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231006.tar.gz
Algorithm Hash digest
SHA256 523dc425c194d5caa49c895bdae84ed894a27ebc47d844c919cdecbcefae0d44
MD5 d24cdd7a6287d3e63f70bc1b5314531c
BLAKE2b-256 8969c2bd806bc5e2e024527929599ebcefd72b3d0f296054e8547676f28aaacb

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231006-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231006-py3-none-any.whl
Algorithm Hash digest
SHA256 4eaf06a02d5406ddb3afe189ed53b8c13d39e39776cd8d67c04f0e4f1cad4683
MD5 f56cd830184dfa49192008a58a7b79f2
BLAKE2b-256 d343d0cfbcde6f5b67f0dfcc6bbeb599471c12854ff662d39645e43acf8681c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page