Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231007.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231007-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231007.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231007.tar.gz
Algorithm Hash digest
SHA256 2dad6a04e1ce5866ef715d227429cd12a682142dbaf7b6e8af64445b9b40caeb
MD5 ecfb2fd0ce13bff7891c4edba01c9eed
BLAKE2b-256 ef522870c8ec7d2514db2b41cd79592f5a47ac1aff09e19e02fe86f63ad52115

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231007-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231007-py3-none-any.whl
Algorithm Hash digest
SHA256 add5783a2507e78ecc415f3ba5678d3fc7ccdb20545d7e69f32b8e6a5b53ef69
MD5 6a0de544aa3951eabb737abadbf59b5c
BLAKE2b-256 335d77830d1f4235f2d3252031118baf736418c39398a682135ea40167e6638d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page