Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231008.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231008-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231008.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231008.tar.gz
Algorithm Hash digest
SHA256 5b2f01aaaa308ccf1d92211839654a45c429251a8a63c25a23eee1d57cc6780e
MD5 0b1a50cc716c86fde9c3052098d7d78a
BLAKE2b-256 5b5bbd2182573de8ae960fa656f746801e621f7bbdb4ec7b39b99453fb47f914

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231008-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231008-py3-none-any.whl
Algorithm Hash digest
SHA256 2c587afb6b015a8628bc9de94f4840ad7fd70bfa881a546ebcf194ee37a3a70e
MD5 76a0b3fcd76394881412ee4e3f4b96fc
BLAKE2b-256 f7661a092ba7d82805b860bee91e8c4df6b7d5e471b2b1cba9983fb8a1cd1b65

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page