Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231009.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231009-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231009.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231009.tar.gz
Algorithm Hash digest
SHA256 45addcfca7bc47a7f8409518b535a9dbfba40defc3aa3da84b7b482c10184efc
MD5 f756d8cb463c04f3c9ec794d3637dfcd
BLAKE2b-256 a90d2b61cf81b63e0a2ee81d96e49d90830b5a9dd61effa572822d9db2682889

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231009-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231009-py3-none-any.whl
Algorithm Hash digest
SHA256 c651800e5cb357d4a67cac8cfcee42084d90e550853d586806566b117ec4c8ab
MD5 43ca5bc236d79f7bce1f39d0b5527b9e
BLAKE2b-256 21835dfc17a18d00b3350e5eaa1829a571d8c3e9d85d6d838b796653128c16f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page