Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231011.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231011-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231011.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231011.tar.gz
Algorithm Hash digest
SHA256 b3e4049c7d105353ab47f9fbd7f2278c15311e7cfd3cb498fd3babce09a23e11
MD5 46d08ab5ecf244bafdb82d2dacdd8e6e
BLAKE2b-256 9ff22aa278a1ccc252b55d437373ec05e42eb2631611ad1429f134b23a720742

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231011-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231011-py3-none-any.whl
Algorithm Hash digest
SHA256 cec94d3e22ebc6e9aba9d8a346fdae2e17ec8e7b02b4d49c62a3554d949a42ce
MD5 734c375c05e64f86f688a6f7f836e32a
BLAKE2b-256 959a662595c536488250d25a3de1476799672f96aac5fd43e9ca78a3d39cdf33

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page