Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231012.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231012-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231012.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231012.tar.gz
Algorithm Hash digest
SHA256 edb43b4425b82cd7ce8661eb5d63f7a31673a35b532ac89381a692e62610cb46
MD5 3e07e5a129b5f2814e7c85a50538126a
BLAKE2b-256 60202ffd687918853e3d3fe27992b97de3a22a2a0537d4941f7aaa4d87fec0ec

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231012-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231012-py3-none-any.whl
Algorithm Hash digest
SHA256 1f882275b72f38c6a9b68795f1ad85c426c416292baee21dcb027d3cae83549c
MD5 66d555a3841e96b29faa8777d442fd70
BLAKE2b-256 b73094beaa1e1afb6bf2ca1198416163196a07e6235ee89e65b3c0337543af86

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page