Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231013.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231013-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231013.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231013.tar.gz
Algorithm Hash digest
SHA256 51ca9605a7f19106e9c217b77a570ca73b871f36a1e9d841de07a4459815918f
MD5 83eea18b1046dd2adda98eeba7785190
BLAKE2b-256 9efce24021a3a0386b14f41b324cbd80b3ef2cdfbd29414fdb05088470bfaaff

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231013-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231013-py3-none-any.whl
Algorithm Hash digest
SHA256 25b28db18272728220fd7261683d0b5d33929353c6324c39bb4f5ed4b6ea9d67
MD5 f25fd4424b78eb52cdaa5c505b150562
BLAKE2b-256 28aabc0d56e7918147886e02575cef81f41371b15658f4f57d47ef3a3db75d6e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page