Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231014.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231014-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231014.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231014.tar.gz
Algorithm Hash digest
SHA256 e660dda4975dada47d8a826cd4aec7f37f78b6fb8073f09f9433fae7eddbfad9
MD5 2ed6ddd81739ea01c43cafc7d088b922
BLAKE2b-256 2575f2231ee8aec537f002fc2424dd8cd1e40d3c81690fa66205d3f724aaad2c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231014-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231014-py3-none-any.whl
Algorithm Hash digest
SHA256 f29a9a65bf8ceded3dfbd256a6206308f8803f8d0f06e6abcf48d056459b7fb5
MD5 0ca20070fd152e05b9af289347923e9a
BLAKE2b-256 7352529198ffc3bff496832e655eab03dae9dbd130a3a8966b5d4a750f103ebf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page