Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231015.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231015-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231015.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231015.tar.gz
Algorithm Hash digest
SHA256 ec0b8bf46c4b7d4246a0e1e7bf6174d5c5d0ba5a084a3545ab3acda9f694a7ff
MD5 9c3c5a66f81b9a85f23453eedd4d468e
BLAKE2b-256 5b7c52a8be279961e5008d06f406b30a206f0e55b7cd6c727550ea83c1113681

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231015-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231015-py3-none-any.whl
Algorithm Hash digest
SHA256 1bb67a904c197bc08c72605c2cd7baa35d9ba23ebda1be6aa93f14da5b1ecaf9
MD5 3d24fe4a438fb76fbc9c83f203fdd94c
BLAKE2b-256 a0a71cc924a87ea9197ccf52fdf67fb980cee0fe65537a307e83dffa90414fef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page