Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231017.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231017-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231017.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231017.tar.gz
Algorithm Hash digest
SHA256 a7c3e9a39baf39b11c74848a6fae35a5aeb2a91ad82d4aa886a1aee6144f3aba
MD5 1e17d87b293a5ed8b1695c76617fe24a
BLAKE2b-256 569b97276ef1158eec98f498b90e049727b4454453dece8605d16e8d80d1b60a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231017-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231017-py3-none-any.whl
Algorithm Hash digest
SHA256 24645d9070e632ab931f7173f2949f7ebc849ae09d94fef654c6d620daf0024d
MD5 bb25a47e782bb7c2aa463a17b84fc706
BLAKE2b-256 94b3b2918f4731b0f4c0545f327eada767ecbe184e37e5d50ea9f0d431d92cf2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page