Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231018.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231018-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231018.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231018.tar.gz
Algorithm Hash digest
SHA256 80829a9b84eb4975667f6a9ef5b0c4ac5e78b54979721a7d4dc612fd9b6c5e19
MD5 24c0dec768414b0e529209f24741482e
BLAKE2b-256 fec6945d5e4c019e099edda74e00afe0e38e9d762e188e6a4f0e1b7f09e4febe

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231018-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231018-py3-none-any.whl
Algorithm Hash digest
SHA256 b548740955fb3dfe90539637bc2ae2fc08fc226bdce9a90f9f54e8bc87b4777b
MD5 18e08235bbf6ac0ad7edfa05f5d53c2f
BLAKE2b-256 7907894bf5c9250846c4b71289373639f33445d152ff92ff890b276f0d403154

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page