Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231019.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231019-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231019.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231019.tar.gz
Algorithm Hash digest
SHA256 1005b9dd221604585a9626fb1068340d35a0d6675fcffbfd338b536e9c981f93
MD5 0c38355fb9e38cad87a2ff9e182266e4
BLAKE2b-256 7a0f1fa567aeabbfe11f98d776c15fa9ed58ba08b7b23645cf0407fe4e042fb2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231019-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231019-py3-none-any.whl
Algorithm Hash digest
SHA256 8c86fb2c5d565c5466fd1229353c2c36912db329385c06a62082c4bdd9bf2971
MD5 89247ead608f09617d6ef775974d16d4
BLAKE2b-256 669a6b0b6cbb9c81d525cf2af3aa328863c605142afe7fceb4bff0c7df85d335

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page