Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231021.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231021-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231021.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231021.tar.gz
Algorithm Hash digest
SHA256 9da5a0e2aae0db9df60bea335dd5c409da3c2c1af6470130adce6c61924d0e78
MD5 c66434add2d8ca5e5daa4173a3218a9e
BLAKE2b-256 b18136448382e74a6dc8444db4b7031ac661e6f8863867bdfa727ffa56b10c54

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231021-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231021-py3-none-any.whl
Algorithm Hash digest
SHA256 8551c3dba6318a5abb1847490b035e58dbff328ecfa8c0c2e033b8e1f92ff06d
MD5 0211a22f45856b724ff94b4addce0bcb
BLAKE2b-256 f6bbb6e961ec6d6533b79d5a4791b65459a99f940496959ee5f51367baf3a59d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page