Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231022.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231022-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231022.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231022.tar.gz
Algorithm Hash digest
SHA256 cdf6d93038cc86198006bde8eca9cc231728c87a958bbc3beb35671ceb1cf3c0
MD5 5f0b9190353e01fc0a3190123afff116
BLAKE2b-256 9491f7ab137e0924e86fc9bcb3d23bbdb8228a7b8b8b4c054d84fb150552a87d

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231022-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231022-py3-none-any.whl
Algorithm Hash digest
SHA256 646fc5d8f4ea26f6f63cb55fa01a68cec8571f37c4b31457ca45c69065ccbe23
MD5 48826b8a207cd056fb74d71c25b78e32
BLAKE2b-256 4a6a70ea4c46f86d550d558248e27a6613afb4420a92ce9d96e1da822839e7fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page